Описание
Морфология наноструктур может существенным образом различаться в зависимости от состава материала, его кристаллической структуры и способа получения. Существующие методы синтеза позволяют получать наночастицы различных форм: сферической, стержневой, трубчатой, игольчатой, кубической, октаэдрической и т. д. — и размеров. Например, варьирование таких параметров гидротермального синтеза, как температура, давление, концентрация реагентов, время обработки и pH, позволяет существенно влиять на морфологию, состав и степень кристалличности получаемого продукта [1] (см. рис.).
Морфологическое разнообразие наноразмерных объектов, построенных на основе органических молекул, практически безгранично. Так, современные биотехнологии, использующие самособирающиеся двойные спирали ДНК в качестве строительных блоков, позволяют целенаправленно создавать трехмерные структуры, размеры которых находятся в диапазоне от 10 до 100 нм. С помощью одного из таких подходов были созданы наноразмерные «ДНК-оригами» — полигональные каркасы, шестеренки, мосты, бутылки и т. п. [2, 3].
Изменение морфологии является действенным способом управления функциональными характеристиками наноматериалов, а также влияет на их биосовместимость, поскольку является, по сути, отражением результата эволюции (трансформации) поверхности (границы раздела сред) в процессе получения материала. Морфологическое разнообразие в наибольшей степени важно именно для наноматериалов, поскольку они характеризуются, как правило, большой долей поверхностных атомов, предопределяющих особенности физико-химических свойств. С другой стороны, большинство наноматериалов является термодинамически неравновесными, поэтому неравновесная (отличная от формы монокристалла данного вещества) морфология является отражением метастабильности наноматериалов, т. е. нахождения системы в локальном минимуме свободной энергии.
Иллюстрации
![]() |
Морфология наночастиц α-Fe2O3, формирующихся в результате гидротермальный обработки хлорида железа (III), взятого в различных концентрациях, в присутствии ПАВ (ЦТАБ) [1]. |
Авторы
- Борисенко Григорий Геннадиевич
- Гольдт Анастасия Евгеньевна
- Гудилин Евгений Алексеевич
Источники
- Pu Z. et al. Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes // Nanotechnology
- Dietz H., Douglas S.M., Shih W.M. Folding DNA into twisted and curved nanoscale shapes // Science. 2009. V. 325. P. 725–30.
- Douglas S.M., Dietz H., Liedl T. et al. Self-assembly of DNA into nanoscale three-dimensional shapes // Nature. 2009. V. 459. P. 414–8.