Описание
Данное явление носит имя немецкого физика Теодора Ферстера, который в 1946 г. написал первую статью о переносе энергии возбуждения. Безызлучательный перенос энергии происходит от донора, находящегося в возбужденном состоянии, на акцептор через диполь-дипольное взаимодействие.
Характерной чертой данного процесса является тушение флуоресценции донора и возникновение более длинноволновой флуоресценции акцептора. Скорость этого процесса зависит от расстояния между объектами (убывает как r–6), что позволяет измерять дистанцию как между двумя молекулами, так и между метками в одной макромолекуле. Эффективное расстояние, на котором скорость перехода составляет 50% от максимума, называют ферстеровским радиусом. Для большинства систем его величина составляет 20–50 Å.
Скорость переноса также зависит от степени перекрывания спектров испускания донора и поглощения акцептора, от взаимной ориентации диполей донора и акцептора и от времени жизни возбужденного состояния донора в отсутствие акцептора.
Эффективность переноса энергии (или отношение числа событий переноса энергии к числу событий возбуждения донора) напрямую связана со скоростью переноса и имеет такую же зависимость от расстояния между объектами (убывает как r–6).
Явление переноса энергии позволяет изучать строение макромолекул, оценивать межмолекулярные взаимодействия и скорости биохимических реакций. Оно активно используется в биохимии, молекулярной биологии, биотехнологии и медицине.
Иллюстрации
![]() |
Внутримолекулярный перенос энергии в молекуле белка. |
Автор
Источники
- Lakowicz J. R. Principles of fluorescence spectroscopy. — Springer, 2006. — 954 p.
- Ермолаев В.Л., Свешникова Е. Б., Бодунов Е.Н. Индуктивно-резонансный механизм безызлучательных переходов в ионах и молекулах в конденсированной фазе // УФН. 1996. Т. 166, №3. С. 281–305.
- Агранович В.М., Галанин М. Д. Перенос энергии электронного возбуждения в конденсированных средах. — М.: Наука, 1978. — 383 с.
- Rakshit S., Vasudevan S. Resonance Energy Transfer from Cyclodextrin-Capped ZnO:MgO Nanocrystals to Included Nile Red Guest Molecules in Aqueous Media // ACS Nano. 2008. V. 2, №7. P. 1473– 1479.